Energy-efficient natural gas hydrate production using gas exchange

Cited 207 time in webofscience Cited 169 time in scopus
  • Hit : 747
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKoh, Dong-Yeunko
dc.contributor.authorKang, Hyeryko
dc.contributor.authorLee, Jong-Wonko
dc.contributor.authorPark, Youngjuneko
dc.contributor.authorKim, Se-Joonko
dc.contributor.authorLee, Jaehyoungko
dc.contributor.authorLee, Joo Yongko
dc.contributor.authorLee, Huenko
dc.date.accessioned2016-06-07T09:04:39Z-
dc.date.available2016-06-07T09:04:39Z-
dc.date.created2016-02-01-
dc.date.created2016-02-01-
dc.date.issued2016-01-
dc.identifier.citationAPPLIED ENERGY, v.162, pp.114 - 130-
dc.identifier.issn0306-2619-
dc.identifier.urihttp://hdl.handle.net/10203/207728-
dc.description.abstractBreaking the bounds of classical natural gas hydrate (NGH) production processes, a newborn concept based on the gas exchange mechanism provides an opportunity to catch two birds with one stone: simultaneously achieving the sequestration of CO2 for climate change mitigation and the enhanced recovery of CH4 for energy production. As a 'new paradigm' in NGH production schemes, the non-destructive gas exchange as one of the most stable and promising NGH recovery approaches has received much attention in the fields of physics, chemistry, chemical engineering, civil engineering, petroleum engineering and geology. In this review, we assess the state-of-the-art gas exchange concept for NGH production by understanding its principles and developments, with emphasis on another technical breakthrough using the CO2 + N-2 gas mixture injection. After establishing the fundamentals of the gas exchange process, we make a general survey of the NGH field production in the North Slope of Alaska in 2012, which practically adopted the gas exchange as a key technology. Several recent international NGH field production tests that basically use depressurization are also briefly analyzed for comparison. We suggest that the gas exchange method is ready to be tested in the NGH deposits with the valuable lessons learned from past pioneering tests.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectCARBON-DIOXIDE HYDRATE-
dc.subjectX-RAY-DIFFRACTION-
dc.subjectMETHANE HYDRATE-
dc.subjectPOROUS-MEDIA-
dc.subjectTHERMAL-STIMULATION-
dc.subjectCLATHRATE HYDRATE-
dc.subjectHEAT-TRANSFER-
dc.subjectCO2 HYDRATE-
dc.subjectC-13 NMR-
dc.subjectHYDRAULIC CONDUCTIVITY-
dc.titleEnergy-efficient natural gas hydrate production using gas exchange-
dc.typeArticle-
dc.identifier.wosid000367631000011-
dc.identifier.scopusid2-s2.0-84946225971-
dc.type.rimsART-
dc.citation.volume162-
dc.citation.beginningpage114-
dc.citation.endingpage130-
dc.citation.publicationnameAPPLIED ENERGY-
dc.identifier.doi10.1016/j.apenergy.2015.10.082-
dc.contributor.localauthorKoh, Dong-Yeun-
dc.contributor.localauthorLee, Huen-
dc.contributor.nonIdAuthorLee, Jong-Won-
dc.contributor.nonIdAuthorPark, Youngjune-
dc.contributor.nonIdAuthorKim, Se-Joon-
dc.contributor.nonIdAuthorLee, Jaehyoung-
dc.contributor.nonIdAuthorLee, Joo Yong-
dc.description.isOpenAccessN-
dc.type.journalArticleReview-
dc.subject.keywordAuthorNatural gas hydrate-
dc.subject.keywordAuthorGas exchange-
dc.subject.keywordAuthorCO2-CH4 replacement-
dc.subject.keywordAuthorThermodynamics-
dc.subject.keywordPlusCARBON-DIOXIDE HYDRATE-
dc.subject.keywordPlusX-RAY-DIFFRACTION-
dc.subject.keywordPlusMETHANE HYDRATE-
dc.subject.keywordPlusPOROUS-MEDIA-
dc.subject.keywordPlusTHERMAL-STIMULATION-
dc.subject.keywordPlusCLATHRATE HYDRATE-
dc.subject.keywordPlusHEAT-TRANSFER-
dc.subject.keywordPlusCO2 HYDRATE-
dc.subject.keywordPlusC-13 NMR-
dc.subject.keywordPlusHYDRAULIC CONDUCTIVITY-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 207 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0