Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel

Cited 157 time in webofscience Cited 141 time in scopus
  • Hit : 235
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYuan, L.ko
dc.contributor.authorPonge, D.ko
dc.contributor.authorWittig, J.ko
dc.contributor.authorChoi, Pyuck-Pako
dc.contributor.authorJimenez, J. A.ko
dc.contributor.authorRaabe, D.ko
dc.date.accessioned2016-05-10T08:22:50Z-
dc.date.available2016-05-10T08:22:50Z-
dc.date.created2016-02-05-
dc.date.created2016-02-05-
dc.date.issued2012-04-
dc.identifier.citationACTA MATERIALIA, v.60, no.6-7, pp.2790 - 2804-
dc.identifier.issn1359-6454-
dc.identifier.urihttp://hdl.handle.net/10203/207078-
dc.description.abstractAustenite reversion during tempering of a Fe-13.6 Cr-0.44 C (wt.%) martensite results in an ultra-high-strength ferritic stainless steel with excellent ductility. The austenite reversion mechanism is coupled to the kinetic freezing of carbon during low-temperature partitioning at the interfaces between martensite and retained austenite and to carbon segregation at martensite martensite grain boundaries. An advantage of austenite reversion is its scalability, i.e. changing tempering time and temperature tailors the desired strength-ductility profiles (e.g. tempering at 400 degrees C for 1 min produces a 2 GPa ultimate tensile strength (UTS) and 14% elongation while 30 mm at 400 degrees C results in a UTS of similar to 1.75 GPa with an elongation of 23%). The austenite reversion process, carbide precipitation and carbon segregation have been characterized by X-ray diffraction, electron back-scatter diffraction, transmission electron microscopy and atom probe tomography in order to develop the structure-property relationships that control the material's strength and ductility. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectDEFORMATION-INDUCED MARTENSITE-
dc.subjectATOM-PROBE TOMOGRAPHY-
dc.subjectSUPERMARTENSITIC STAINLESS-STEEL-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectREVERTED AUSTENITE-
dc.subjectTEMPERING PROCESS-
dc.subjectLATH MARTENSITE-
dc.subjectHEAT-TREATMENT-
dc.subjectCARBON-
dc.subjectTRANSFORMATION-
dc.titleNanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel-
dc.typeArticle-
dc.identifier.wosid000303952000032-
dc.identifier.scopusid2-s2.0-84859101370-
dc.type.rimsART-
dc.citation.volume60-
dc.citation.issue6-7-
dc.citation.beginningpage2790-
dc.citation.endingpage2804-
dc.citation.publicationnameACTA MATERIALIA-
dc.identifier.doi10.1016/j.actamat.2012.01.045-
dc.contributor.localauthorChoi, Pyuck-Pa-
dc.contributor.nonIdAuthorYuan, L.-
dc.contributor.nonIdAuthorPonge, D.-
dc.contributor.nonIdAuthorWittig, J.-
dc.contributor.nonIdAuthorJimenez, J. A.-
dc.contributor.nonIdAuthorRaabe, D.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAustenite reversion-
dc.subject.keywordAuthorPartitioning-
dc.subject.keywordAuthorDiffusion-
dc.subject.keywordAuthorStrength-
dc.subject.keywordAuthorDuctility-
dc.subject.keywordPlusDEFORMATION-INDUCED MARTENSITE-
dc.subject.keywordPlusATOM-PROBE TOMOGRAPHY-
dc.subject.keywordPlusSUPERMARTENSITIC STAINLESS-STEEL-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusREVERTED AUSTENITE-
dc.subject.keywordPlusTEMPERING PROCESS-
dc.subject.keywordPlusLATH MARTENSITE-
dc.subject.keywordPlusHEAT-TREATMENT-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusTRANSFORMATION-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 157 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0