Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire

Cited 185 time in webofscience Cited 182 time in scopus
  • Hit : 263
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLi, Y. J.ko
dc.contributor.authorChoi, Pyuck-Pako
dc.contributor.authorGoto, S.ko
dc.contributor.authorBorchers, C.ko
dc.contributor.authorRaabe, D.ko
dc.contributor.authorKirchheim, R.ko
dc.date.accessioned2016-05-10T08:22:39Z-
dc.date.available2016-05-10T08:22:39Z-
dc.date.created2016-02-05-
dc.date.created2016-02-05-
dc.date.issued2012-05-
dc.identifier.citationACTA MATERIALIA, v.60, no.9, pp.4005 - 4016-
dc.identifier.issn1359-6454-
dc.identifier.urihttp://hdl.handle.net/10203/207077-
dc.description.abstractHypereutectoid steel wires with 6.35 GPa tensile strength after a cold-drawing true strain of 6.02 were annealed between 300 and 723 K. The ultrahigh strength remained upon annealing for 30 min up to a temperature of 423 K but dramatically decreased with further increasing temperature. The reduction of tensile strength mainly occurred within the first 2-3 min of annealing. Atom probe tomography and transmission electron microscopy reveal that the lamellar structure remains up to 523 K. After annealing at 673 K for 30 min, coarse hexagonal ferrite (sub)grains with spheroidized cementite, preferentially located at triple junctions, were observed in transverse cross-sections. C and Si segregated at the (sub)grain boundaries, while Mn and Cr enriched at the ferrite/cementite phase boundaries due to their low mobility in cementite. No evidence of recrystallization was found even after annealing at 723 K for 30 min. The stability of the tensile strength for low-temperature annealing (<473 K) and its dramatic drop upon high-temperature annealing (>473 K) are discussed based on the nanostructural observations. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectATOM-PROBE TOMOGRAPHY-
dc.subjectTRANSMISSION ELECTRON-MICROSCOPY-
dc.subjectVACANCY FORMATION ENERGIES-
dc.subjectREDUCING GRAIN-BOUNDARY-
dc.subjectCEMENTITE DISSOLUTION-
dc.subjectSOLUTE SEGREGATION-
dc.subjectSCALE MICROSTRUCTURES-
dc.subjectQUANTITATIVE-ANALYSIS-
dc.subjectTHERMAL-STABILITY-
dc.subjectDISLOCATION LINE-
dc.titleEvolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire-
dc.typeArticle-
dc.identifier.wosid000304844400032-
dc.identifier.scopusid2-s2.0-84860372977-
dc.type.rimsART-
dc.citation.volume60-
dc.citation.issue9-
dc.citation.beginningpage4005-
dc.citation.endingpage4016-
dc.citation.publicationnameACTA MATERIALIA-
dc.identifier.doi10.1016/j.actamat.2012.03.006-
dc.contributor.localauthorChoi, Pyuck-Pa-
dc.contributor.nonIdAuthorLi, Y. J.-
dc.contributor.nonIdAuthorGoto, S.-
dc.contributor.nonIdAuthorBorchers, C.-
dc.contributor.nonIdAuthorRaabe, D.-
dc.contributor.nonIdAuthorKirchheim, R.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPearlitic steel-
dc.subject.keywordAuthorUltrahigh strength-
dc.subject.keywordAuthorAtom probe tomography-
dc.subject.keywordAuthorAnnealing-
dc.subject.keywordAuthorGrain boundary segregation-
dc.subject.keywordPlusATOM-PROBE TOMOGRAPHY-
dc.subject.keywordPlusTRANSMISSION ELECTRON-MICROSCOPY-
dc.subject.keywordPlusVACANCY FORMATION ENERGIES-
dc.subject.keywordPlusREDUCING GRAIN-BOUNDARY-
dc.subject.keywordPlusCEMENTITE DISSOLUTION-
dc.subject.keywordPlusSOLUTE SEGREGATION-
dc.subject.keywordPlusSCALE MICROSTRUCTURES-
dc.subject.keywordPlusQUANTITATIVE-ANALYSIS-
dc.subject.keywordPlusTHERMAL-STABILITY-
dc.subject.keywordPlusDISLOCATION LINE-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 185 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0