Characterizing Escherichia coli DH5 alpha Growth and Metabolism in a Complex Medium Using Genome-Scale Flux Analysis

Cited 45 time in webofscience Cited 22 time in scopus
  • Hit : 598
  • Download : 1766
Genome-scale flux analysis of Escherichia coli DH5 alpha growth in a complex medium was performed to investigate the relationship between the uptake of various nutrients and their metabolic outcomes. During the exponential growth phase, we observed a sequential consumption order of serine, aspartate and glutamate in the complex medium as well as the complete consumption of key carbohydrate nutrients, glucose and trehalose. Based on the consumption and production rates of the measured metabolites, constraints-based flux analysis of a genomescale E. coli model was then conducted to elucidate their utilization in the metabolism. The in silico analysis revealed that the cell exploited biosynthetic precursors taken up directly from the complex medium, through growth-related anabolic pathways. This suggests that the cell could be functioning in an energetically more efficient manner by reducing the energy needed to produce amino acids. The in silico simulation also allowed Lis to explain the observed rapid consumption of serine: excessively consumed external serine from the complex medium was mainly converted into pyruvate and glycine, which in turn, led to the acetate accumulation. The present work demonstrates the application of an in silico modeling approach to characterizing microbial metabolism under complex medium condition. This work further illustrates the use of in silico genome-scale analysis for developing better strategies related to improving microbial growth and enhancing the productivity of desirable metabolites.
Publisher
JOHN WILEY SONS INC
Issue Date
2009-02
Language
English
Article Type
Article
Citation

BIOTECHNOLOGY AND BIOENGINEERING, v.102, no.3, pp.923 - 934

ISSN
0006-3592
DOI
10.1002/bit.22186
URI
http://hdl.handle.net/10203/20262
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 45 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0