Effects of electron-beam irradiation on structural, electrical, and optical properties of amorphous indium gallium zinc oxide thin films

Cited 19 time in webofscience Cited 17 time in scopus
  • Hit : 156
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJeon, Kiseokko
dc.contributor.authorShin, Seung Wookko
dc.contributor.authorJo, Jaeseungko
dc.contributor.authorKim, Myung Sangko
dc.contributor.authorShin, Jae Cheolko
dc.contributor.authorJeong, Chaehwanko
dc.contributor.authorLim, Jun Hyungko
dc.contributor.authorSong, Junhoko
dc.contributor.authorHeo, Jaeyeongko
dc.contributor.authorKim, Jin Hyeokko
dc.date.accessioned2015-11-20T09:51:06Z-
dc.date.available2015-11-20T09:51:06Z-
dc.date.created2014-11-24-
dc.date.created2014-11-24-
dc.date.issued2014-11-
dc.identifier.citationCURRENT APPLIED PHYSICS, v.14, no.11, pp.1591 - 1595-
dc.identifier.issn1567-1739-
dc.identifier.urihttp://hdl.handle.net/10203/201125-
dc.description.abstractHigh-energy electron-beam irradiation of indium gallium zinc oxide (IGZO) films improved the short-range arrangement. The increase in band gap was used as an indication of such improvement. X-ray diffraction confirmed that the films treated with a DC voltage of 2-4.5 kV for duration of up to 35 min are in the amorphous state or nanocrystalline phase. Higher energy electron-beam irradiation led to increased conductivity, which mainly comes from the drastic increase in electron concentration. Electron-beam treatment could be a viable route to improve the contact resistance between the source/drain and channel layer in thin-film transistor devices.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectROOM-TEMPERATURE-
dc.subjectTRANSISTORS-
dc.subjectSEMICONDUCTOR-
dc.subjectDEPOSITION-
dc.subjectINGAZNO-
dc.titleEffects of electron-beam irradiation on structural, electrical, and optical properties of amorphous indium gallium zinc oxide thin films-
dc.typeArticle-
dc.identifier.wosid000343693200033-
dc.identifier.scopusid2-s2.0-84907664749-
dc.type.rimsART-
dc.citation.volume14-
dc.citation.issue11-
dc.citation.beginningpage1591-
dc.citation.endingpage1595-
dc.citation.publicationnameCURRENT APPLIED PHYSICS-
dc.identifier.doi10.1016/j.cap.2014.08.022-
dc.contributor.nonIdAuthorJeon, Kiseok-
dc.contributor.nonIdAuthorJo, Jaeseung-
dc.contributor.nonIdAuthorKim, Myung Sang-
dc.contributor.nonIdAuthorShin, Jae Cheol-
dc.contributor.nonIdAuthorJeong, Chaehwan-
dc.contributor.nonIdAuthorLim, Jun Hyung-
dc.contributor.nonIdAuthorSong, Junho-
dc.contributor.nonIdAuthorHeo, Jaeyeong-
dc.contributor.nonIdAuthorKim, Jin Hyeok-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAmorphous oxide semiconductor-
dc.subject.keywordAuthorIndium gallium zinc oxide-
dc.subject.keywordAuthorElectron-beam irradiation-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusTRANSISTORS-
dc.subject.keywordPlusSEMICONDUCTOR-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusINGAZNO-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0