Fast Randomized Singular Value Thresholding for Nuclear Norm Minimization

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 165
  • Download : 19
Rank minimization problem can be boiled down to either Nuclear Norm Minimization (NNM) or Weighted NNM (WNNM) problem. The problems related to NNM (or WNNM) can be solved iteratively by applying a closedform proximal operator, called Singular Value Thresholding(SVT) (or Weighted SVT), but they suffer from high computational cost to compute a Singular Value Decomposition (SVD) at each iteration. In this paper, we propose an accurate and fast approximation method for SVT, called fast randomized SVT (FRSVT), where we avoid direct computation of SVD. The key idea is to extract an approximate basis for the range of a matrix from its compressed matrix. Given the basis, we compute the partial singular values of the original matrix from a small factored matrix. While the basis approximation is the bottleneck, our method is already severalfold faster than thin SVD. By adopting a range propagation technique, we can further avoid one of the bottleneck at each iteration. Our theoretical analysis provides a stepping stone between the approximation bound of SVD and its effect to NNM via SVT. Along with the analysis, our empirical results on both quantitative and qualitative studies show our approximation rarely harms the convergence behavior of the host algorithms. We apply it and validate the efficiency of our method on various vision problems, e.g. subspace clustering, weather artifact removal, simultaneous multi-image alignment and rectification.
Publisher
IEEE Computer Society and the Computer Vision Foundation (CVF)
Issue Date
2015-06-10
Language
English
Citation

CVPR2015 IEEE Conference on Computer Vision and Pattern Recognition

URI
http://hdl.handle.net/10203/199664
Appears in Collection
EE-Conference Papers(학술회의논문)

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0