Soil treatment using microbial biopolymers for anti-desertification purposes

Cited 134 time in webofscience Cited 104 time in scopus
  • Hit : 454
  • Download : 0
Desertification and soil degradation are becoming more serious due to global warming and concurrent extreme climate events. Although anti-desertification efforts have been mounted worldwide, most undertakings have shown poor performance because of failure to consider soil and geotechnical aspects. Soil erosion is accelerated by reductions in soil cohesion and water retention due to the transfer of fine particles from the original ground. Thus, soil internal cohesion must be recovered to ensure effective and reliable anti-desertification attempts. In this study, soil treatment using biopolymers is suggested as an alternative method to prevent soil erosion and for revitalization, taking into consideration engineering and environmental aspects. Even as a relatively small part of the soil mass (i.e., 0.5-1.0%), biopolymers in soil have the positive potential to significantly reduce the erodibility of soil by enhancing inter-particle cohesion. Moreover, biopolymer treatment also improves both vegetation germination and soil water retention characteristics against evaporation, and therefore can provide suitable environments for plants and crops used as a desertification countermeasure in arid and semi-arid regions where annual precipitation is limited. We suggest combining biopolymers with pre-existing anti-desertification efforts (e.g., afforestation and windbreaks) on desert fronts (i.e., boundaries between arid and semi-arid regions) for best efficiency.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2015-09
Language
English
Article Type
Article
Citation

GEODERMA, v.253, pp.39 - 47

ISSN
0016-7061
DOI
10.1016/j.geoderma.2015.04.006
URI
http://hdl.handle.net/10203/199448
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 134 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0