Fermentative butanol production by clostridia

Cited 748 time in webofscience Cited 818 time in scopus
  • Hit : 514
  • Download : 544
DC FieldValueLanguage
dc.contributor.authorLee, SangYupko
dc.contributor.authorPark, JHko
dc.contributor.authorJang, SHko
dc.contributor.authorNielsen, LKko
dc.contributor.authorKim, Jko
dc.contributor.authorJung, KSko
dc.date.accessioned2010-11-15T07:22:11Z-
dc.date.available2010-11-15T07:22:11Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2008-10-
dc.identifier.citationBIOTECHNOLOGY AND BIOENGINEERING, v.101, no.2, pp.209 - 228-
dc.identifier.issn0006-3592-
dc.identifier.urihttp://hdl.handle.net/10203/19941-
dc.description.abstractButanol is an aliphatic saturated alcohol having the molecular formula of C4H9OH. Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications. Moreover, butanol has been considered as a potential fuel or fuel additive. Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century. However, fermentive production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes. Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production. This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and down stream processes. The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed.-
dc.description.sponsorshipThis review was possible through the collaborative research between the Institute for the BioCentury at KAIST and the Australian Institute for Bioengineering and Nanotechnology at The University of Queensland.en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherJOHN WILEY SONS INC-
dc.titleFermentative butanol production by clostridia-
dc.typeArticle-
dc.identifier.wosid000259512900001-
dc.identifier.scopusid2-s2.0-51649108629-
dc.type.rimsART-
dc.citation.volume101-
dc.citation.issue2-
dc.citation.beginningpage209-
dc.citation.endingpage228-
dc.citation.publicationnameBIOTECHNOLOGY AND BIOENGINEERING-
dc.identifier.doi10.1002/bit.22003-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorLee, SangYup-
dc.contributor.nonIdAuthorPark, JH-
dc.contributor.nonIdAuthorJang, SH-
dc.contributor.nonIdAuthorNielsen, LK-
dc.contributor.nonIdAuthorKim, J-
dc.contributor.nonIdAuthorJung, KS-
dc.type.journalArticleReview-
dc.subject.keywordAuthorbutanol-
dc.subject.keywordAuthormetabolic engineering-
dc.subject.keywordAuthorClostridium-
dc.subject.keywordAuthorsystems biotechnology-
dc.subject.keywordPlusACETOBUTYLICUM ATCC 824-
dc.subject.keywordPlusALDEHYDE/ALCOHOL DEHYDROGENASE GENE-
dc.subject.keywordPlusGLUCOSE PHOSPHOTRANSFERASE SYSTEM-
dc.subject.keywordPlusINCREASED SOLVENT PRODUCTION-
dc.subject.keywordPlusGROUP-II INTRONS-
dc.subject.keywordPlusBEIJERINCKII BA101-
dc.subject.keywordPlusESCHERICHIA-COLI-
dc.subject.keywordPlusTRANSCRIPTIONAL ANALYSIS-
dc.subject.keywordPlusACETONE FORMATION-
dc.subject.keywordPlusRECOMBINANT STRAINS-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 748 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0