Dynamic designing of microstructures by chemical gradient-mediated growth

Cited 33 time in webofscience Cited 28 time in scopus
  • Hit : 470
  • Download : 896
Shape is one of the most important determinants of the properties of microstructures. Despite of a recent progress on microfabrication techniques, production of three-dimensional micro-objects are yet to be fully achieved. Nature uses reaction-diffusion process during bottom-up self-assembly to create functional shapes and patterns with high complexity. Here we report a method to produce polymeric microstructures by using a dynamic reaction-diffusion process during top-down photolithography, providing unprecedented control over shape and composition. In radical polymerization, oxygen inhibits reaction, and therefore diffusion of oxygen significantly alters spatial distribution of growth rate. Therefore, growth pathways of the microstructures can be controlled by engineering a concentration gradient of oxygen. Moreover, stepwise control of chemical gradients enables the creation of highly complex microstructures. The ease of use and high controllability of this technology provide new opportunities for microfabrication and for fundamental studies on the relationships between shape and function for the materials.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2015-03
Language
English
Article Type
Article
Keywords

OXYGEN INHIBITION; PHOTOPOLYMERIZATION; MICROPARTICLES; LITHOGRAPHY; PARTICLES; JANUS

Citation

NATURE COMMUNICATIONS, v.6

ISSN
2041-1723
DOI
10.1038/ncomms7584
URI
http://hdl.handle.net/10203/198524
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
000353040100003.pdf(1.36 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 33 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0