Kinetics of Methane Hydrate Replacement with Carbon Dioxide and Nitrogen Gas Mixture Using in Situ NMR Spectroscopy

Cited 104 time in webofscience Cited 103 time in scopus
  • Hit : 419
  • Download : 0
In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ H-1 and C-13 NMR spectroscopy. The replacement process was monitored by in situ H-1 NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ C-13 NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.
Publisher
AMER CHEMICAL SOC
Issue Date
2015-02
Language
English
Article Type
Article
Keywords

LIQUID CO2; RECOVERY; DEPRESSURIZATION; VERIFICATION; CO2-HYDRATE; RESERVOIRS; CONVERSION; SEDIMENTS

Citation

ENVIRONMENTAL SCIENCE & TECHNOLOGY, v.49, no.3, pp.1964 - 1971

ISSN
0013-936X
DOI
10.1021/es504888n
URI
http://hdl.handle.net/10203/195799
Appears in Collection
CBE-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 104 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0