The Number of Sidon Sets and the Maximum Size of Sidon Sets Contained in a Sparse Random Set of Integers

Cited 25 time in webofscience Cited 25 time in scopus
  • Hit : 321
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKohayakawa, Yoshiharuko
dc.contributor.authorLee, Sang Juneko
dc.contributor.authorRoedl, Vojtechko
dc.contributor.authorSamotij, Wojciechko
dc.date.accessioned2015-03-16T08:04:04Z-
dc.date.available2015-03-16T08:04:04Z-
dc.date.created2014-12-29-
dc.date.created2014-12-29-
dc.date.created2014-12-29-
dc.date.issued2015-01-
dc.identifier.citationRANDOM STRUCTURES & ALGORITHMS, v.46, no.1, pp.1 - 25-
dc.identifier.issn1042-9832-
dc.identifier.urihttp://hdl.handle.net/10203/194145-
dc.description.abstractA set A of non-negative integers is called a Sidon set if all the sums a1+a(2), with a(1)<= a(2) and a(1), a(2), are distinct. A well-known problem on Sidon sets is the determination of the maximum possible size F(n) of a Sidon subset of [n]={0,1,...,n-1}. Results of Chowla, Erdos, Singer and Turan from the 1940s give that F(n)=(1+o(1))root n. We study Sidon subsets of sparse random sets of integers, replacing the dense environment' [n] by a sparse, random subset R of [n], and ask how large a subset S< subset of>R can be, if we require that S should be a Sidon set. Let R=[n]m be a random subset of [n] of cardinality m=m(n), with all the subsets of [n] equiprobable. We investigate the random variable F([n]m)=max|S|, where the maximum is taken over all Sidon subsets S< subset of>[n]m, and obtain quite precise information on F([n]m) for the whole range of m, as illustrated by the following abridged version of our results. Let 0a1 be a fixed constant and suppose m=m(n)=(1+o(1))na. We show that there is a constant b=b(a) such that, almost surely, we have F([n]m)=nb+o(1). As it turns out, the function b=b(a) is a continuous, piecewise linear function of a that is non-differentiable at two critical' points: a = 1/3 and a = 2/3. Somewhat surprisingly, between those two points, the function b=b(a) is constant. Our approach is based on estimating the number of Sidon sets of a given cardinality contained in [n]. Our estimates also directly address a problem raised by Cameron and Erds (On the number of sets of integers with various properties, Number theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, pp. 61-79).-
dc.languageEnglish-
dc.publisherWILEY-BLACKWELL-
dc.subjectARITHMETIC PROGRESSIONS-
dc.subjectUNCROWDED HYPERGRAPHS-
dc.subjectGRAPHS-
dc.subjectSUBSETS-
dc.titleThe Number of Sidon Sets and the Maximum Size of Sidon Sets Contained in a Sparse Random Set of Integers-
dc.typeArticle-
dc.identifier.wosid000345595000001-
dc.identifier.scopusid2-s2.0-84921661741-
dc.type.rimsART-
dc.citation.volume46-
dc.citation.issue1-
dc.citation.beginningpage1-
dc.citation.endingpage25-
dc.citation.publicationnameRANDOM STRUCTURES & ALGORITHMS-
dc.identifier.doi10.1002/rsa.20496-
dc.contributor.localauthorLee, Sang June-
dc.contributor.nonIdAuthorKohayakawa, Yoshiharu-
dc.contributor.nonIdAuthorRoedl, Vojtech-
dc.contributor.nonIdAuthorSamotij, Wojciech-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSidon sets-
dc.subject.keywordAuthorrandom sets of integers-
dc.subject.keywordAuthorprobabilistic extremal problems-
dc.subject.keywordAuthoradditive combinatorics-
dc.subject.keywordPlusARITHMETIC PROGRESSIONS-
dc.subject.keywordPlusUNCROWDED HYPERGRAPHS-
dc.subject.keywordPlusGRAPHS-
dc.subject.keywordPlusSUBSETS-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0