Performance improvement in Cd-free Cu(In,Ga)Se-2 solar cells by modifying the electronic structure of the ZnMgO buffer layer

Cited 33 time in webofscience Cited 32 time in scopus
  • Hit : 351
  • Download : 0
ZnMgO thin film is a potential buffer layer in Cu(In,Ga)Se-2 (CIGS) solar cells. ZnMgO film can be uniformly deposited, and the composition of Mg can be precisely controlled by the atomic layer deposition process. The conduction band offset at the ZnMgO/CIGS interface can be reduced by increasing the Mg content in the ZnMgO buffer. The ZnMgO buffer layer with 20% Mg content has shown the best cell efficiency in the AZO/i-ZnO/ZnMgO/CIGS structure. In this study, with the removal of i-ZnO from the structure, the cell efficiency was improved from 13.9 to 15.2% due to a decrease in the series resistance and an increase in the shunt resistance. Then, the 40 nm thick Zn0.8Mg0.2O buffer layer was modified to a Zn0.9Mg0.1O (20 nm)/Zn0.8Mg0.2O (20 nm) bilayer, in which the thickness of the Zn0.8Mg0.2O layer was reduced while the total thickness was maintained to minimize plasma damage from the subsequent AZO deposition by sputtering. With the bilayer buffer, the efficiency of the CIGS solar cell was further increased from 15.2 to 16.4%. In particular, the open circuit voltage and fill factor were significantly improved. Fewer deep level states in the Zn0.9Mg0.1O/Zn0.8Mg0.2O bilayer compared to a single Zn0.8Mg0.2O layer may be responsible for the improved performance.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2014
Language
English
Article Type
Article
Keywords

FILM; DEPOSITION

Citation

RSC ADVANCES, v.4, no.69, pp.36784 - 36790

ISSN
2046-2069
DOI
10.1039/c4ra07776h
URI
http://hdl.handle.net/10203/192626
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 33 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0