Tuning Cage Dimension in Clathrate Hydrates for Hydrogen Multiple Occupancy

Cited 54 time in webofscience Cited 41 time in scopus
  • Hit : 471
  • Download : 181
DC FieldValueLanguage
dc.contributor.authorKoh, Dong-Yeunko
dc.contributor.authorKang, Hyeryko
dc.contributor.authorJeon, Jiwonko
dc.contributor.authorAhn, Yun-Hoko
dc.contributor.authorPark, Young-Juneko
dc.contributor.authorKim, Hyungjunko
dc.contributor.authorLee, Huenko
dc.date.accessioned2014-08-29T01:35:19Z-
dc.date.available2014-08-29T01:35:19Z-
dc.date.created2014-04-01-
dc.date.created2014-04-01-
dc.date.created2014-04-01-
dc.date.issued2014-02-
dc.identifier.citationJOURNAL OF PHYSICAL CHEMISTRY C, v.118, no.6, pp.3324 - 3330-
dc.identifier.issn1932-7447-
dc.identifier.urihttp://hdl.handle.net/10203/188807-
dc.description.abstractAs hydrogen molecules enter the clathrate hydrate body, the ubiquitous dodecahedral cavity (S-12) is too small to allow anything but single occupancy thermodynamically. The possibility that H-2 double occupancy can occur in the dodecahedral cavity has been suggested and is still under debate. Here we uncover the unique feature of multiple occupancy of the hydrogen molecule in a dodecahedral cavity as induced by tuning the cage dimensions. The guest promoter population in the hydrate matrix spontaneously controls the degree of molecular hydrogen storage by tuning the cage dimensions. Our analysis combined with computational study reveals that only 1% expansion (similar to 3% in volume) of the cage dimensions is sufficient to provide thermodynamically stable room for double occupancy in the dodecahedral cavity. The findings in this research provide a strategy for doubling the hydrogen population in dodecahedral cavities in structure II hydrates.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectMOLECULAR-HYDROGEN-
dc.subjectTHERMAL EXPANSIVITY-
dc.subjectSTORAGE-
dc.subjectTETRAHYDROFURAN-
dc.subjectCLUSTERS-
dc.subjectDIFFRACTION-
dc.titleTuning Cage Dimension in Clathrate Hydrates for Hydrogen Multiple Occupancy-
dc.typeArticle-
dc.identifier.wosid000331493400051-
dc.identifier.scopusid2-s2.0-84894070017-
dc.type.rimsART-
dc.citation.volume118-
dc.citation.issue6-
dc.citation.beginningpage3324-
dc.citation.endingpage3330-
dc.citation.publicationnameJOURNAL OF PHYSICAL CHEMISTRY C-
dc.identifier.doi10.1021/jp410632q-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorKoh, Dong-Yeun-
dc.contributor.localauthorKim, Hyungjun-
dc.contributor.localauthorLee, Huen-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMOLECULAR-HYDROGEN-
dc.subject.keywordPlusTHERMAL EXPANSIVITY-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusTETRAHYDROFURAN-
dc.subject.keywordPlusCLUSTERS-
dc.subject.keywordPlusDIFFRACTION-
dc.subject.keywordPlusMOLECULAR-HYDROGEN-
dc.subject.keywordPlusTHERMAL EXPANSIVITY-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusTETRAHYDROFURAN-
dc.subject.keywordPlusCLUSTERS-
dc.subject.keywordPlusDIFFRACTION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 54 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0