The displacement estimation error back-propagation (DEEP) method for a multiple structural displacement monitoring system

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 344
  • Download : 0
Visually servoed paired structured light system (ViSP) has been found to be useful in estimating 6-DOF relative displacement. The system is composed of two screens facing each other, each with one or two lasers, a 2-DOF manipulator and a camera. The displacement between two sides is estimated by observing positions of the projected laser beams and rotation angles of the manipulators. To apply the system to massive structures, the whole area should be partitioned and each ViSP module is placed in each partition in a cascaded manner. The estimated displacement between adjoining ViSPs is combined with the next partition so that the entire movement of the structure can be estimated. The multiple ViSPs, however, have a major problem that the error is propagated through the partitions. Therefore, a displacement estimation error back-propagation (DEEP) method which uses Newton-Raphson or gradient descent formulation inspired by the error back-propagation algorithm is proposed. In this method, the estimated displacement from the ViSP is updated using the error back-propagated from a fixed position. To validate the performance of the proposed method, various simulations and experiments have been performed. The results show that the proposed method significantly reduces the propagation error throughout the multiple modules.
Publisher
IOP PUBLISHING LTD
Issue Date
2013-04
Language
English
Article Type
Article
Citation

MEASUREMENT SCIENCE & TECHNOLOGY, v.24, no.4

ISSN
0957-0233
DOI
10.1088/0957-0233/24/4/045104
URI
http://hdl.handle.net/10203/173792
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0