The electrical properties of dielectric stacks of SiO2 and Al2O3 prepared by atomic layer deposition method

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 1306
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHan, Byeolko
dc.contributor.authorLee, Seung-Wonko
dc.contributor.authorPark, Kwangcholko
dc.contributor.authorPark, Chong-Ookko
dc.contributor.authorRha, Sa-Kyunko
dc.contributor.authorLee, Won-Junko
dc.date.accessioned2013-03-12T07:26:51Z-
dc.date.available2013-03-12T07:26:51Z-
dc.date.created2012-03-07-
dc.date.created2012-03-07-
dc.date.issued2012-03-
dc.identifier.citationCURRENT APPLIED PHYSICS, v.12, no.2, pp.434 - 436-
dc.identifier.issn1567-1739-
dc.identifier.urihttp://hdl.handle.net/10203/101664-
dc.description.abstractWe produced dielectric stacks composed of ALD SiO2 and ALD Al2O3, such as SiO2/Al2O3, Al2O3/SiO2, and SiO2/Al2O3/SiO2, and measured the leakage currents through the stacks in comparison with those of the single oxide layers. SiO2/Al2O3 shows lowest leakage current for negative bias region below 6.4 V, and Al2O3/SiO2 showed highest current under negative biases below 4.5 V. Two distinct electron conduction regimes are observed for Al2O3 and SiO2/Al2O3. Poole-Frenkel emission is dominant at the high-voltage regime for both dielectrics, whereas the direct tunneling through the dielectric is dominant at the low-voltage regime. The calculated transition voltage between two regimes for SiO2 (6.5 nm)/Al2O3 (12.6 nm) is -6.4 V, which agrees well with the experimental observation (-6.1 V). For the same EOT of entire dielectric stack, the transition voltage between two regimes decreases with thinner SiO2 layer. (C) 2011 Elsevier B. V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectNONVOLATILE MEMORY DEVICES-
dc.subjectTUNNEL BARRIERS-
dc.subjectFLASH MEMORY-
dc.subjectREDUCTION-
dc.titleThe electrical properties of dielectric stacks of SiO2 and Al2O3 prepared by atomic layer deposition method-
dc.typeArticle-
dc.identifier.wosid000297003600015-
dc.identifier.scopusid2-s2.0-81155133835-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue2-
dc.citation.beginningpage434-
dc.citation.endingpage436-
dc.citation.publicationnameCURRENT APPLIED PHYSICS-
dc.identifier.doi10.1016/j.cap.2011.07.045-
dc.contributor.localauthorPark, Chong-Ook-
dc.contributor.nonIdAuthorHan, Byeol-
dc.contributor.nonIdAuthorLee, Seung-Won-
dc.contributor.nonIdAuthorRha, Sa-Kyun-
dc.contributor.nonIdAuthorLee, Won-Jun-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDielectric stack-
dc.subject.keywordAuthorSiO2-
dc.subject.keywordAuthorAl2O3-
dc.subject.keywordAuthorLeakage current-
dc.subject.keywordAuthorAtomic layer deposition-
dc.subject.keywordPlusNONVOLATILE MEMORY DEVICES-
dc.subject.keywordPlusTUNNEL BARRIERS-
dc.subject.keywordPlusFLASH MEMORY-
dc.subject.keywordPlusREDUCTION-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0