Continuous microalgae recovery using electrolysis with polarity exchange

Cited 61 time in webofscience Cited 0 time in scopus
  • Hit : 718
  • Download : 51
DC FieldValueLanguage
dc.contributor.authorKim, Jung-Minko
dc.contributor.authorRyu, Byoung-Gonko
dc.contributor.authorKim, Bo-Kyongko
dc.contributor.authorHan, Jong-Inko
dc.contributor.authorYang, Ji-Wonko
dc.date.accessioned2013-03-12T05:14:11Z-
dc.date.available2013-03-12T05:14:11Z-
dc.date.created2012-06-01-
dc.date.created2012-06-01-
dc.date.issued2012-05-
dc.identifier.citationBIORESOURCE TECHNOLOGY, v.111, pp.268 - 275-
dc.identifier.issn0960-8524-
dc.identifier.urihttp://hdl.handle.net/10203/101406-
dc.description.abstractThere is increasing interest in the use of microalgae as a renewable source for the production of fuels and chemicals, but improvements are needed in all steps of this process, including harvesting. A continuous microalgae harvest system was developed based on electrolysis, referred to here as a continuous electrolytic microalgae (CEM) harvest system. This innovative system combines cultivation and harvesting and enables continuous and efficient concentration of microalgae. The electrodes were subject to a polarity exchange (PE) in the middle of the operation to further improve the harvest efficiency. Use of PE, rather than conventional electro-coagulation-flotation (ECF), led to more efficient cell recovery and more uniform recovery over the entire harvest chamber. In addition, PE increased the cell growth rate and the circulated cells remained intact after harvesting. (C) 2012 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectWASTE-WATER-
dc.subjectELECTROCOAGULATION PROCESS-
dc.subjectALUMINUM ELECTRODES-
dc.subjectFLOCCULATION-
dc.subjectREMOVAL-
dc.subjectCOAGULATION-
dc.subjectFLOTATION-
dc.subjectALGAE-
dc.subjectPERFORMANCE-
dc.subjectBIODIESEL-
dc.titleContinuous microalgae recovery using electrolysis with polarity exchange-
dc.typeArticle-
dc.identifier.wosid000302979100038-
dc.identifier.scopusid2-s2.0-84858751201-
dc.type.rimsART-
dc.citation.volume111-
dc.citation.beginningpage268-
dc.citation.endingpage275-
dc.citation.publicationnameBIORESOURCE TECHNOLOGY-
dc.identifier.doi10.1016/j.biortech.2012.01.104-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorHan, Jong-In-
dc.contributor.localauthorYang, Ji-Won-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorNannochloris oculata-
dc.subject.keywordAuthorBiodiesel-
dc.subject.keywordAuthorElectrolysis-
dc.subject.keywordAuthorContinuous harvest-
dc.subject.keywordAuthorPolarity exchange-
dc.subject.keywordPlusWASTE-WATER-
dc.subject.keywordPlusELECTROCOAGULATION PROCESS-
dc.subject.keywordPlusALUMINUM ELECTRODES-
dc.subject.keywordPlusFLOCCULATION-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusCOAGULATION-
dc.subject.keywordPlusFLOTATION-
dc.subject.keywordPlusALGAE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusBIODIESEL-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 61 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0