Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl-NiO composite nanofibers

Cited 82 time in webofscience Cited 0 time in scopus
  • Hit : 371
  • Download : 0
This study reports the fabrication and characterization of LaOCl-NiO composite and LaNiO3 nanofiber mats and their potential applications for p-type gas sensors and electrochemical capacitors. One-dimensional LaOCl-NiO composite and LaNiO3 fibers were prepared via the electrospinning of LaNiO3 precursor/poly(vinyl acetate) composite fibers followed by subsequent thermal annealing. The size and distribution of the primary particles within the LaOCl-NiO composite and LaNiO3 fibers were largely governed by the calcination conditions (from 450 to 950 degrees C). The perovskite LaNiO3 phase started to form at calcination temperatures that exceeded 750 degrees C. Upon the formation of the perovskite LaNiO3 phase, the electrical resistivity decreased remarkably from 1.1 x 10(6) to 0.692 Omega cm. LaOCl-NiO composite fiber mats calcined at 550 degrees C and 650 degrees C showed p-type semiconducting gas sensing properties and exhibited significantly enhanced C2H5OH sensitivity against CO, H-2, NH3 and NO2 gases. The conducting LaNiO3 fiber mats calcined at 750 degrees C were used as the basis of a hybrid electrochemical capacitor in which the fiber mats served as the conducting core for electrostatic spray-deposited manganese oxide overlayers. The manganese oxide/LaNiO3 stacked electrodes exhibited a high specific capacitance of similar to 160 F g(-1) at 10 mV s(-1).
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2011
Language
English
Article Type
Article
Keywords

LITHIUM-ION BATTERIES; LIGHT-EMITTING DIODE; SINGLE ZNO NANOWIRE; THIN-FILMS; ELECTROCHEMICAL CAPACITORS; ELECTRODE MATERIAL; SNO2 NANOWIRES; ANODE MATERIAL; OXIDE; DEPOSITION

Citation

JOURNAL OF MATERIALS CHEMISTRY, v.21, no.6, pp.1959 - 1965

ISSN
0959-9428
DOI
10.1039/c0jm02256j
URI
http://hdl.handle.net/10203/100723
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 82 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0