Effect of sodium butyrate on autophagy and apoptosis in Chinese hamster ovary cells

Cited 32 time in webofscience Cited 0 time in scopus
  • Hit : 374
  • Download : 0
Sodium butyrate (NaBu), which is widely used in recombinant Chinese hamster ovary cell (rCHO) cultures for high-level expression of therapeutic proteins, is known to induce apoptosis in a dose-dependent manner. Lately, the significance of autophagy has increased in the field of CHO cell culture due to the fact that autophagy is related to the programmed cell death mechanism. To determine the effect of NaBu on autophagy as well as apoptosis of rCHO cells, rCHO cells producing erythropoietin were subjected to NaBu treatment. NaBu treatment up to 5 mM increased cleaved forms of PARP, caspase-3, and Annexin V positive population, confirming the previous results that NaBu induces apoptosis. Concurrently, NaBu treatment increased the level of accumulation of the autophagic marker, LC3-II, independently of nutrient depletion, suggesting that NaBu induces autophagy. To elucidate the potential role of autophagy induced by NaBu, a representative autophagy inducer (rapamycin) or an inhibitor (bafilomycin A1) was added to cultures together with NaBu. It was found that autophagy had the potential role of a positive cell survival mechanism under NaBu treatment. Furthermore, gradual reduction in mitochondrial membrane potential/mass and recruitment of a mitophagy protein, Parkin, to the mitochondria were observed under NaBu treatment, suggesting that this positive function of autophagy might be mediated by the autophagic removal of damaged mitochondria. Taken together, autophagy was observed in rCHO cell culture under NaBu treatments and the results obtained here support the positive effects of autophagy induced by NaBu treatments. (c) 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012
Publisher
WILEY-BLACKWELL
Issue Date
2012-03
Language
English
Article Type
Article
Keywords

HISTONE DEACETYLASE INHIBITORS; MITOCHONDRIA; CULTURE; DEGRADATION; EXPRESSION; DEATH; THROMBOPOIETIN; TRANSITION; INCREASES; CASPASE-3

Citation

BIOTECHNOLOGY PROGRESS, v.28, no.2, pp.349 - 357

ISSN
8756-7938
DOI
10.1002/btpr.1512
URI
http://hdl.handle.net/10203/99494
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 32 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0