Spin-orbit density functional theory calculations for (X = F, Cl, Br and I) molecules

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 185
  • Download : 0
Two component spin-orbit density functional theory (SODFT) calculations for spectroscopic constants of IX (X = F, Cl, Br and I) molecules have been performed with several functionals using shape-consistent relativistic effective core potentials (RECPs) with effective one-electron spin-orbit operator. The SODFT results obtained with the B3LYP functional are in very good accord with the results of previous two-component CCSD(T) calculations with the same RECP and basis sets. Results of two-component SODFT calculations with RECPs are also in good agreement with reported all-electron relativistic DFT calculations with the same functionals. The spectroscopic constants obtained with ACM and PBE0 functionals display the best agreement with the experimental values among the functionals tested. Spin-orbit effects from the SODFT calculations result in increases of bond lengths and decreases of dissociation energies and harmonic vibrational frequencies and the magnitudes are in reasonable agreement with those from two-component CCSD(T) calculations. Spin-orbit effects appear to be quite insensitive to the choice of functionals for the bond lengths and harmonic vibrational frequencies, but those of the dissociation energies somewhat deviate with the differing class of functionals.
Publisher
TAYLOR & FRANCIS LTD
Issue Date
2005-08
Language
English
Article Type
Article
Keywords

EFFECTIVE CORE POTENTIALS; RELATIVISTIC EFFECTIVE POTENTIALS; OPERATORS; APPROXIMATION; EXCHANGE; AU-2; AUH; HX

Citation

MOLECULAR PHYSICS, v.103, no.15-16, pp.2117 - 2122

ISSN
0026-8976
DOI
10.1080/00268970500130936
URI
http://hdl.handle.net/10203/90814
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0