Effects of poly(acrylic acid) and poly(ethylene oxide) adsorption on the stability of alumina suspension

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 343
  • Download : 0
The effect of adsorbed polymer on the stability of alumina suspension was investigated. Poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA) and similar kinds of polymer salts were used as a dispersant. The amount of polymer adsorbed on alumina surface and the suspension stability was measured. The pH, molecular weight, and concentration were considered as experimental parameters. PEO shows low affinity on the alumina surface while PAA has high affinity. In the case of PAA adsorption, the surface charge change by polymer adsorption influences suspension stability strongly, but not in the case of PEO adsorption. In simultaneous adsorption of PEO and PAA, the PAA concentration was fixed and PEO concentration was varied. The stability of suspension increased with increasing PEO concentration, and this is partly due to the steric stabilization by adsorption of PAA-PEO complex or adsorption of PEO through pre-adsorbed PAA and the depletion effect of non-adsorbed polymer. Suspension adsorbing sodium salts of PAA and poly(methacrylic acid) (PMA) each showed similar stability. But, when the PEO and these kinds of salts were added together to the suspension, the one with PAA sodium salt could keep a higher stability even with lower molecular weights of PEO compared with suspension with PMA sodium salt.
Publisher
KOREAN INST CHEM ENGINEERS
Issue Date
2003-09
Language
English
Article Type
Article
Keywords

SURFACE

Citation

KOREAN JOURNAL OF CHEMICAL ENGINEERING, v.20, no.5, pp.916 - 921

ISSN
0256-1115
URI
http://hdl.handle.net/10203/79567
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0