The universal cover of an affine three-manifold with holonomy of shrinkable dimension <= two

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 350
  • Download : 0
An affine manifold is a manifold with an affine structure, i.e. a torsion-free flat affine connection. We show that the universal cover of a closed affine 3-manifold M with holonomy group of shrinkable dimension (or discompacite in French) less than or equal to two is diffeomorphic to R-3. Hence, M is irreducible. This follows from two results: (i) a simply connected affine 3-manifold which is 2-convex is diffeomorphic to R-3, whose proof using the Morse theory takes most of this paper; and (ii) a closed affine manifold of holonomy of shrinkable dimension less or equal to d is d-convex. To prove (i); we show that 2-convexity is a geometric form of topological incompressibility of level sets. As a consequence, we show that the universal cover of a closed affine three-manifold with parallel volume form is diffeomorphic to R-3, a part of the weak Markus conjecture. As applications, we show that the universal cover of a hyperbolic 3-manifold with cone-type singularity of arbitrarily assigned cone-angles along a link removed with the singular locus is diffeomorphic to R-3 A Cake cell has an affine structure as shown by Gromov. Such a cell must have a concave point at the boundary.
Publisher
WORLD SCIENTIFIC PUBL CO PTE LTD
Issue Date
2000-05
Language
English
Article Type
Article
Keywords

REAL PROJECTIVE-STRUCTURES; CONVEX DECOMPOSITIONS; COMPACT SURFACES; OBSTRUCTION

Citation

INTERNATIONAL JOURNAL OF MATHEMATICS, v.11, no.3, pp.305 - 365

ISSN
0129-167X
DOI
10.1142/S0129167X00000171
URI
http://hdl.handle.net/10203/75292
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0