Let X be a nondegenerate integral subscheme of dimension n and degree d in P-N defined over the complex number field C. X is said to be k-regular if H-i (P-N, J(X) (k - i)) = 0 for all i greater than or equal to 1, where J(X) is the sheaf of ideals of O-pN and Castelnuovo-Mumford regularity reg (X) of X is defined as the least such k. There is a well-known conjecture concerning k-regularity: reg (X) less than or equal to deg (X) - codim (X) + 1. This regularity conjecture including the classification of borderline examples was verified for integral curves (Castelnuovo, Gruson, Lazarsfeld and Peskine), and an optimal bound was also obtained for smooth surfaces (Pinkham, Lazarsfeld). It will be shown here that reg (X) less than or equal to deg (X) -1 for smooth threefolds X in P-5 and that the only extremal cases are the rational cubic scroll and the complete intersection of two quadrics. Furthermore, every smooth threefold X in P-5 is k-normal for all k greater than or equal to deg (X) - 4, which is the optimal bound as the Palatini 3-fold of degree 7 shows. The same bound also holds for smooth regular surfaces in P-4 other than for the Veronese surface.

- Publisher
- WALTER DE GRUYTER CO

- Issue Date
- 1999

- Language
- English

- Article Type
- Article

- Citation
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, v.509, pp.21 - 34

- ISSN
- 0075-4102

- Appears in Collection
- MA-Journal Papers(저널논문)

- Files in This Item
- There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.