확장 언센티드 칼만 필터 기반 자기 위치 추정 및 지도 작성 = Scalable Unscented Kalman Filter based Simultaneous Localization And Mapping

지난 수 십년동안, 이동로봇의 가장 핵심적인 문제중의 하나인 자기위치 인식 및 지도작성 문제(SLAM)를 해결하기 위해 많은 선행연구자들의 노력이 있었다. 예컨대, 확장 칼만필터 SLAM, 언센티트 칼만필터 SLAM, RBPF SLAM, FastSLAM을 들 수 있다. FastSLAM이 이론적으로 가장 최선의 해답이라는 것이 알려져 있지만, 이 역시 아직 일관성 유지의 문제를 내재하고 있다. 왜냐하면, 입자필터 기반의 방법론에서는 더욱 중요한 입자의 재 선택 과정이 있기 대문이다. 반면에 칼만필터 계열의 방법론의 가장 큰 문제점은 확장성인데, 특징점의 증가량의 자승에 비례하는 속도로 공분산 행렬이 증가하기 때문이다. 그러므로, 성공적인 SLAM을 위해서는 일관성의 유지와 확장성을 보장하는 것이 매우 중요한 요소인 것을 알 수 있다. 본 논문에서는 정해진 개수의 특징점을 가지는 지역지도로 나누어 확장성 문제를 해결하고자 하며, 누적되는 오차를 줄이기 위해 언센티드 병합 기법을 도입하였다. 이 기법은 지역 지도가 공유하는 특징점을 이용하는 방법이다. 게다가, 이 기법은 강인한 시각기반 SLAM을 위해 언센티드 칼만 필터에 통합되었다. 실험에서는 여러 환경에서 시각기반 SLAM을 적용하였다. 이러한 실험들은 제안한 방법이 비교적 큰 영역에서 수 만개의 특징점을 관리함과 동시에 일관성 있는 자기위치인식과 지도작성을 할 수 있음을 입증한다.
Advisors
권인소researcherKweon, In-Soresearcher
Publisher
한국과학기술원
Issue Date
2009
Identifier
308575/325007  / 020074183
Language
kor
Description

학위논문(석사) - 한국과학기술원 : 로봇공학학제전공, 2009.2, [ vi, 59 p. ]

Keywords

SLAM; UKF; Scalable; submap; unscented merge; 슬램; 자기위치인식; 지도작성; 언센티드 칼만 필터; 지역지도

URI
http://hdl.handle.net/10203/54224
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=308575&flag=t
Appears in Collection
RE-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.
  • Hit : 160
  • Download : 0
  • Cited 0 times in thomson ci

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0