Cancer-targeting Gold-decorated Melanin Nanoparticles for In vivo Near-infrared Photothermal Therapy

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 17
  • Download : 0
Photothermal cancer therapy has gained increasing attention as a minimally invasive treatment via the localized heating of photothermal agents to eradicate cancer cells. However, its clinical translation has been limited by insufficient photothermal conversion in the near-infrared (NIR) range and low tumor-targeting efficiency. Here, synthetic melanin-like nanoparticles (similar to 190 nm in diameter) decorated with a cluster of smaller gold nanoparticles (similar to 20 nm in diameter) are developed as efficient NIR photothermal agents for in vivo cancer treatment. The melanin-gold hybrid nanoparticles are prepared by the oxidative polymerization of dopamine into colloidal melanin-like nanoparticles, followed by the spontaneous reduction of gold ion precursors into plasmonic nanoparticles on the surface of melanin nanoparticles. The gold nanoparticles significantly increase the NIR light absorption and photothermal conversion of the melanin nanoparticles, making their overall photothermal performance superior to conventional gold nanorods. Chemical conjugation of epidermal growth factor to the hybrid nanoparticles facilitates their cellular internalization into lung adenocarcinoma cells and enables in vivo tumor-targeting in a xenograft mouse model. The nanoparticles also exhibit excellent dispersion stability in serum and maintain high photothermal efficiency even after extensive laser irradiation. Our results suggest that the electronic hybridization of melanin and gold nanostructures provides a new opportunity to fine-tune their optical and chemical properties for tumor-targeted photothermal therapy.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2024-05
Language
English
Article Type
Article
Citation

MOLECULAR SYSTEMS DESIGN & ENGINEERING, v.9, no.5, pp.507 - 517

ISSN
2058-9689
DOI
10.1039/d3me00173c
URI
http://hdl.handle.net/10203/319370
Appears in Collection
CBE-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0