Electrode design and performance of flow-type electrochemical lithium recovery (ELR) systems

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 77
  • Download : 0
Due to increasing interests in carbon neutral engineering, global market demand for lithium compounds is steadily growing, which serve as key compounds in the battery production. As a sustainable alternative for lithium compound production, electrochemical lithium recovery (ELR) is being studied extensively in recent years. However, research efforts for ELR have been mainly devoted to the synthesis of electrode materials, leaving an open problem of comprehensively understanding the effects of multiple electrode design parameters on the system performances. In this study, to address such a problem systematically, the ELR system with lambda-MnO2/LiMn2O4 (LMO) electrodes is numerically investigated at a low current density of 62.5 mu A/cm(2). Three electrode design parameters are selected, which are known as key parameters in the literature: effective radius of LMO particles (r(p)), volume fraction of LMO particles in electrodes (epsilon(s)), and electrode thickness (delta). Under the parameter range considered, the specific mass of Li(+ )recovered (q(Li+)) took the value ranging from 35.71 mg/g to 37.66 mg/g, while the range covered by the net energy consumption (W-net) was from 0.17 Wh/mol to 5.44 Wh/ mol. Sensitivity analysis showed that, with increasing r(p), q(Li+) decreases and W-net increases, while opposite correlations were observed for epsilon(s) and delta. It was also shown that the maximum of q(Li+) and the minimum of W-net can be achieved only with small r(p) (regardless of epsilon(s)& nbsp;and delta), making it the most important parameter.
Publisher
ELSEVIER
Issue Date
2022-06
Language
English
Article Type
Article
Citation

DESALINATION, v.532

ISSN
0011-9164
DOI
10.1016/j.desal.2022.115732
URI
http://hdl.handle.net/10203/310277
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0