Co-operative strategy for an interactive robot soccer system by reinforcement learning method

This paper presents a cooperation strategy between a human operator and autonomous robots for an interactive robot soccer game. The interactive robot soccer game has been developed to allow humans to join into the game dynamically and reinforce entertainment characteristics. In order to make these games more interesting, a cooperation strategy between humans and autonomous robots on a team is very important. Strategies can be pre-programmed or learned by robots themselves with learning or evolving algorithms. Since the robot soccer system is hard to model and its environment changes dynamically, it is very difficult to pre-program cooperation strategies between robot agents. Q-learning - one of the most representative reinforcement learning methods - is shown to be effective for solving problems dynamically without explicit knowledge of the system. Therefore, in our research, a Q-learning based learning method has been utilized. Prior to utilizing Q-learning, state variables describing the game situation and actions sets of robots have been defined. After the learning process, the human operator could play the game more easily. To evaluate the usefulness of the proposed strategy, some simulations and games have been carried out.
Publisher
Korean Institute of Electrical Engineers
Issue Date
2003-06
Language
ENG
Citation

INTERNATIONAL JOURNAL OF CONTROL, AUTOMATION AND SYSTEMS, v.1, no.2, pp.236 - 242

ISSN
1598-6446
URI
http://hdl.handle.net/10203/3095
Appears in Collection
ME-Journal Papers(저널논문)
  • Hit : 425
  • Download : 34
  • Cited 0 times in thomson ci

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0