Magnetically and Electrically Responsive Soft Actuator Derived from Ferromagnetic Bimetallic Organic Framework

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 86
  • Download : 0
The advancement in smart devices and soft robotics necessitates the use of multiresponsive soft actuators with high actuation stroke and stable reversibility for their use in real-world applications. Here, this work reports a magnetically and electrically dual responsive soft actuator based on neodymium and iron bimetallic organic frameworks (NdFeMOFs@700). The ferromagnetic NdFeMOFs@700 exhibits a porous carbon structure with excellent magnetization saturation (166.96 emu g(-1)) which allows its application to a dual functional material in both magnetoactive and electro-ionic actuations. The electro-ionic soft actuator, which is fabricated using NdFeMOFs@700 and PEDOT-PSS, demonstrates 4.5 times higher ionic charge storage capacity (68.21 mF cm(-2)) and has excellent cycle stability compared with the PEDOT-PSS based actuator. Under a low sinusoidal input voltage of 1 V, the dual-responsive actuator displays bending displacement of 15.46 mm and also generates deflection of 10 mm at 50 mT. Present results show that the ferromagnetic bimetallic organic frameworks can open a new way to make dual responsive soft actuators due to the hierarchically porous structures with its high redox activity, superior magnetic properties, and larger electrochemical capacitance. With the NdFeMOFs@700 based soft actuators, walking movement of a starfish robot is demonstrated by applying both the magnetic and electric fields.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2023-06
Language
English
Article Type
Article
Citation

SMALL, v.19, no.23

ISSN
1613-6810
DOI
10.1002/smll.202207140
URI
http://hdl.handle.net/10203/307309
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0