Enhancing OER Activity of Ni/Co Oxides via Fe/Mn Substitution within Tailored Mesoporous Frameworks

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 308
  • Download : 0
Non-noble mixed metal oxides are promising electrocatalysts for water splitting reactions in alkaline media. The synthesis of complex mixed metal oxides with the desired composition is challenging due to the formation of phase impurities when synthesis is performed via classical approaches. In this work, we applied the nanocasting technique combined with low-temperature calcination (200 degrees C) in a quasi-sealed container to obtain highly ordered mesoporous mixed metal (Mn/Fe/Ni/Co) oxides. This procedure provides electrocatalysts with distinctive physicochemical characteristics and improved electrocatalytic properties. Partial Ni substitution in Ni0.5Co2.5O4 by Fe and Mn in combination with the highly ordered mesostructure offers a large number of active sites and enhances the performance of the catalyst toward the oxygen evolution reaction (OER) in the alkaline electrolyte. The Mn/Fe/Ni/Co oxide calcined at 200 degrees C outperforms all other synthesized oxides (current density of 262 mA cm-2 at 1.7 V versus RHE and overpotential of 363 mV at 10 mA cm-2) due to synergistic effects. Moreover, this catalyst exhibits significantly higher activity compared to the oxide of identical composition calcined at higher temperature. The results presented in this work show that tuning the synthesis conditions and composition of mixed metal oxides is a simple way to tailor their surface chemistry, mesoporous structure, and catalytic performance for the OER.
Publisher
AMER CHEMICAL SOC
Issue Date
2022-11
Language
English
Article Type
Article
Citation

ACS APPLIED ENERGY MATERIALS, v.5, no.11, pp.13385 - 13397

ISSN
2574-0962
DOI
10.1021/acsaem.2c02055
URI
http://hdl.handle.net/10203/302609
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0