Development of CO gas conversion system using high CO tolerance biocatalyst

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 383
  • Download : 0
Acetogenic bacteria (acetogens) are microorganisms with high potential as biocatalysts that can convert Cl gas, such as carbon dioxide (CO2) or carbon monoxide (CO), into biomass or biochemicals; however, high CO concentrations cause growth retardation in these microorganisms. In this study, we performed adaptive evolution of Eubacterium limosum, an acetogen, for approximately 400 generations under high CO synthetic gas (syngas) conditions to obtain E. limosum ECO2, which can rapidly proliferate even under high CO conditions. A mutation was revealed in H636R in the Acetyl-CoA synthase (ACS) protein of the ECO2 strain through whole-genome resequencing, and the mutation increased the CO gas conversion rate. By analyzing the transcript profiling of the ECO2 strain under high CO syngas conditions, the transcript levels of the methyl branch in the Wood-Ljungdahl pathway and the energy conservation system increased at high CO concentration conditions. Finally, to convert CO into value-added biochemicals, 2,3-BDO (2,3-butanediol) biosynthesis pathways were constructed and transformed into the E. limosum ECO2 strain. This strain showed capability to produce 2.60 mg L(-1)h(-1) of 2,3-BDO through CO 66% syngas fed-batch fermentation. This was 6.5-fold higher than that of the wild type. We developed a microorganism with high CO tolerance, and this strain showed high application potential as a biocatalyst that can efficiently convert CO gas into value-added chemicals.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2022-12
Language
English
Article Type
Article
Citation

CHEMICAL ENGINEERING JOURNAL, v.449

ISSN
1385-8947
DOI
10.1016/j.cej.2022.137678
URI
http://hdl.handle.net/10203/301549
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0