Anomalous gait feature classification from 3-D motion capture data

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 222
  • Download : 0
The gait kinematics of an individual is affected by various factors, including age, anthropometry, gender, and disease. Detecting anomalous gait features aids in the diagnosis and treatment of gait-related diseases. The objective of this study was to develop a machine learning method for automatically classifying five anomalous gait features, i.e., toe-out, genu varum, pes planus, hindfoot valgus, and forward head posture features, from three-dimensional data on gait kinematics. Gait data and gait feature labels of 488 subjects were acquired. The orientations of the human body segments during a gait cycle were mapped to a low-dimensional latent gait vector using a variational autoencoder. A two-layer neural network was trained to classify five gait features using logistic regression and calculate an anomalous gait feature vector (AGFV). The proposed network showed balanced accuracies of 82.8% for a toe-out, 85.9% for hindfoot valgus, 80.2% for pes planus, 73.2% for genu varum, and 92.9% for forward head posture when the AGFV was rounded to the nearest zero or 1. Multiple anomalous gait features were detectable using the proposed method, which has a practical advantage over current gait indices, including the gait deviation index with a single value. The overall results confirmed the feasibility of using the proposed method for screening subjects with anomalous gait features using three-dimensional motion capture data.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2022-02
Language
English
Article Type
Article
Citation

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, v.26, no.2, pp.696 - 703

ISSN
2168-2194
DOI
10.1109/JBHI.2021.3101549
URI
http://hdl.handle.net/10203/292060
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0