Unsupervised Geometry-Aware Deep LiDAR Odometry

Cited 36 time in webofscience Cited 23 time in scopus
  • Hit : 202
  • Download : 0
Learning-based ego-motion estimation approaches have recently drawn strong interest from researchers, mostly focusing on visual perception. A few learning-based approaches using Light Detection and Ranging (LiDAR) have been re-ported; however, they heavily rely on a supervised learning manner. Despite the meaningful performance of these approaches, supervised training requires ground-truth pose labels, which is the bottleneck for real-world applications. Differing from these approaches, we focus on unsupervised learning for LiDAR odometry (LO) without trainable labels. Achieving trainable LO in an unsupervised manner, we introduce the uncertainty-aware loss with geometric confidence, thereby al-lowing the reliability of the proposed pipeline. Evaluation on the KITTI, Complex Urban, and Oxford RobotCar datasets demonstrate the prominent performance of the proposed method compared to conventional model-based methods. The proposed method shows a comparable result against SuMa (in KITTI), LeGO-LOAM (in Complex Urban), and Stereo-VO (in Oxford RobotCar). The video and extra-information of the paper are described in https://sites.google.com/view/deeplo.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2020-05-31
Language
English
Citation

IEEE International Conference on Robotics and Automation (ICRA), pp.2145 - 2152

ISSN
1050-4729
DOI
10.1109/ICRA40945.2020.9197366
URI
http://hdl.handle.net/10203/278856
Appears in Collection
CE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 36 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0