Deep generative design: Integration of topology optimization and generative models

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 24
  • Download : 0
Deep learning has recently been applied to various research areas of design optimization. This study presents the need and effectiveness of adopting deep learning for generative design (or design exploration) research area. This work proposes an artificial intelligent (AI)-based deep generative design framework that is capable of generating numerous design options which are not only aesthetic but also optimized for engineering performance. The proposed framework integrates topology optimization and generative models (e.g., generative adversarial networks (GANs)) in an iterative manner to explore new design options, thus generating a large number of designs starting from limited previous design data. In addition, anomaly detection can evaluate the novelty of generated designs, thus helping designers choose among design options. The 2D wheel design problem is applied as a case study for validation of the proposed framework. The framework manifests better aesthetics, diversity, and robustness of generated designs than previous generative design methods.
Publisher
American Society of Mechanical Engineers (ASME)
Issue Date
2019-11
Language
English
Citation

Journal of Mechanical Design, Transactions of the ASME, v.141, no.11

ISSN
1050-0472
DOI
10.1115/1.4044229
URI
http://hdl.handle.net/10203/268130
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0