RAPIDO: a rejuvenating adaptive PID-type optimiser for deep neural networks

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 20
  • Download : 0
The authors present a novel gradient descent algorithm called RAPIDO for deep learning. It adapts over time and performs optimisation using current, past and future information similar to the PID controller. The proposed method is suited for optimising deep neural networks that consist of activation functions such as sigmoid, hyperbolic tangent and ReLU functions because it can adapt appropriately to sudden changes in gradients. They experimentally study the authors' method and show the performance results by comparing with other methods on the quadratic objective function and the MNIST classification task. The proposed method shows better performance than the other methods.
Publisher
INST ENGINEERING TECHNOLOGY-IET
Issue Date
2019-08
Language
English
Article Type
Article
Citation

ELECTRONICS LETTERS, v.55, no.16, pp.899 - 901

ISSN
0013-5194
DOI
10.1049/el.2019.1593
URI
http://hdl.handle.net/10203/266054
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0