Construction of class fields over imaginary biquadratic fields

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 59
  • Download : 0
Let K be an imaginary biquadratic field and K-1, K-2 be its imaginary quadratic subfields. For integers N > 0, mu >= 0, and an odd prime p with gcd(N, p) = 1, let K-(Np mu) and (K-i)((Np mu)) for i = 1, 2 be the ray class fields of K and K-i, respectively, modulo Np-mu. We first present certain class fields <(K-N,p,mu(1,2))over tilde> of K, in the sense of Hilbert, which are generated by Siegel-Ramachandra invariants of (K-i)((Np mu+1)) for i = 1, 2 over K-(Np mu), and show that K(Np mu+1) = <(K-N(,p,mu)1,2)over tilde> for almost all mu.
Publisher
INDIANA UNIV MATH JOURNAL
Issue Date
2019-04
Language
English
Article Type
Article
Citation

INDIANA UNIVERSITY MATHEMATICS JOURNAL, v.68, no.2, pp.413 - 434

ISSN
0022-2518
DOI
10.1512/iumj.2019.68.7626
URI
http://hdl.handle.net/10203/262526
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0