Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 49
  • Download : 0
Proton exchange membrane fuel cells (PEMFCs) are promising mobile power supply systems, and operate without noise or polluting emissions. Because the oxygen reduction reaction (ORR) at the cathode suffers from high overpotential and sluggish kinetics, many catalysts have been developed in efforts to enhance activity and durability for the ORR. However, most of them have complicated synthetic procedures which cannot be scaled up easily, and have only been tested in a half-cell. High activity in a half-cell does not necessarily guarantee better performance in a single-cell. In this work, we synthesized an Au-doped PtCo/C catalyst using a simple method of gas-phase reduction and subsequent galvanic replacement, and its activity and durability were tested in a single-cell. When current densities were compared at 0.6 V after a durability test of 30,000 cycles in 0.6-1.0 V, the values were 1.40, 0.81, and 0.63 A cm(-2) for the Au-doped PtCo/C, acid-treated PtCo/C, and commercial Pt/C catalysts, respectively. Co leaching was much less in the Au-doped PtCo/C. Density functional theory (DFT) calculations confirmed that surface oxygen species bound more weakly at the catalyst surface and migration of a Co atom (Co segregation) to the surface was suppressed in the presence of Au. This facile method can provide a more realistic strategy to design better ORR catalysts for PEMFC application.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2019-06
Language
English
Article Type
Article
Citation

APPLIED CATALYSIS B-ENVIRONMENTAL, v.247, pp.142 - 149

ISSN
0926-3373
DOI
10.1016/j.apcatb.2019.02.002
URI
http://hdl.handle.net/10203/253916
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0