A Finite-State Machine for Accommodating Unexpected Large Ground-Height Variations in Bipedal Robot Walking

Cited 36 time in webofscience Cited 0 time in scopus
  • Hit : 46
  • Download : 0
This paper presents a feedback controller that allows MABEL, which is a kneed planar bipedal robot with 1-m-long legs, to accommodate terrain that presents large unexpected increases and decreases in height. The robot is provided no information regarding where the change in terrain height occurs and by how much. A finite-state machine is designed that manages transitions among controllers for flat-ground walking, stepping-up and -down, and a trip reflex. If the robot completes a step, the depth of a step-down or the height of a step-up can be immediately estimated at impact from the lengths of the legs and the angles of the robot's joints. The change in height can be used to invoke a proper control response. On the other hand, if the swing leg impacts an obstacle during a step, or has a premature impact with the ground, a trip reflex is triggered on the basis of specially designed contact switches on the robot's shins, contact switches at the end of each leg, and the current configuration of the robot. The design of each control mode and the transition conditions among them are presented. This paper concludes with experimental results of MABEL (blindly) accommodating various types of platforms, including ascent of a 12.5-cm-high platform, stepping-off an 18.5-cm-high platform, and walking over a platform with multiple ascending and descending steps.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2013-04
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON ROBOTICS, v.29, no.2, pp.331 - 345

ISSN
1552-3098
DOI
10.1109/TRO.2012.2230992
URI
http://hdl.handle.net/10203/252002
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 36 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0