Structure of minimum-error quantum state discrimination

Cited 24 time in webofscience Cited 0 time in scopus
  • Hit : 50
  • Download : 0
Distinguishing different quantum states is a fundamental task having practical applications in information processing. Despite the effort devoted so far, however, strategies for optimal discrimination are known only for specific examples. In this paper we consider the problem of minimum-error quantum state discrimination where one attempts to minimize the average error. We show the general structure of minimum-error state discrimination as well as useful properties to derive analytic solutions. Based on the general structure, we present a geometric formulation of the problem, which can be applied to cases where quantum state geometry is clear. We also introduce equivalent classes of sets of quantum states in terms of minimum-error discrimination: sets of quantum states in an equivalent class that share the same guessing probability. In particular, for qubit states where the state geometry is found with the Bloch sphere, we illustrate that for an arbitrary set of qubit states, the minimum-error state discrimination with equal prior probabilities can be analytically solved, that is, optimal measurement and the guessing probability are explicitly obtained.
Publisher
IOP PUBLISHING LTD
Issue Date
2013-07
Language
English
Article Type
Article
Citation

NEW JOURNAL OF PHYSICS, v.15

ISSN
1367-2630
DOI
10.1088/1367-2630/15/7/073037
URI
http://hdl.handle.net/10203/244364
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 24 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0