Data-Driven Physics for Human Soft Tissue Animation

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 290
  • Download : 0
Data driven models of human poses and soft-tissue deformations can produce very realistic results, but they only model the visible surface of the human body and cannot create skin deformation due to interactions with the environment. Physical simulations can generalize to external forces, but their parameters are difficult to control. In this paper, we present a layered volumetric human body model learned from data. Our model is composed of a data-driven inner layer and a physics-based external layer. The inner layer is driven with a volumetric statistical body model (VSMPL). The soft tissue layer consists of a tetrahedral mesh that is driven using the finite element method (FEM). Model parameters, namely the segmentation of the body into layers and the soft tissue elasticity, are learned directly from 4D registrations of humans exhibiting soft tissue deformations. The learned two layer model is a realistic full-body avatar that generalizes to novel motions and external forces. Experiments show that the resulting avatars produce realistic results on held out sequences and react to external forces. Moreover, the model supports the retargeting of physical properties from one avatar when they share the same topology.
Publisher
ASSOC COMPUTING MACHINERY
Issue Date
2017-07
Language
English
Article Type
Article
Keywords

DEFORMATION; SIMULATION; MODELS

Citation

ACM TRANSACTIONS ON GRAPHICS, v.36, no.4

ISSN
0730-0301
DOI
10.1145/3072959.3073685
URI
http://hdl.handle.net/10203/226319
Appears in Collection
GCT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0