Low temperature SiOx thin film deposited by plasma enhanced atomic layer deposition for thin film encapsulation applications

Cited 25 time in webofscience Cited 0 time in scopus
  • Hit : 481
  • Download : 0
Silicon oxide (SiOx) films were synthesized by plasma enhanced atomic layer deposition (PEALD) using di-isopropylaminosilane [SiH3N(C3H7)(2)] as the precursor and an oxygen plasma as the reactant. The layers were characterized with respect to different growth temperatures between 60 and 150 degrees C. The film density and surface roughness values measured by x-ray reflectometry and atomic force microscopy all approached those of thermally grown SiOx. Also, reasonably high breakdown voltages were observed at all deposition temperatures. An interesting phenomenon involves the fact that the SiOx layer deposited at 60 degrees C is most effective as a moisture barrier, as it exhibits the lowest water vapor transmission rate. X-ray photoelectron spectroscopy analyses indicate that the silicon monoxide bonding characteristic becomes more pronounced as the growth temperature decreases. It is conjectured that such a difference in the bonding state renders the surface of the low temperature SiOx films rather hydrophobic, which suppresses the penetration of moisture. The results indicate that low temperature PEALD SiOx films may be suitable for thin film encapsulation applications in mechanical flexible platforms. (C) 2017 American Vacuum Society.
Publisher
American Institute of Physics
Issue Date
2017-07
Language
English
Article Type
Article; Proceedings Paper
Citation

Journal of Vacuum Science and Technology A, v.35, no.4

ISSN
0734-2101
DOI
10.1116/1.4985140
URI
http://hdl.handle.net/10203/225232
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0