Congruences of two-variable p-adic L-functions of congruent modular forms of different weights

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 312
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Suh Hyunko
dc.contributor.authorKim, Byoung Duko
dc.date.accessioned2017-05-15T05:17:26Z-
dc.date.available2017-05-15T05:17:26Z-
dc.date.created2017-05-08-
dc.date.created2017-05-08-
dc.date.issued2017-05-
dc.identifier.citationRAMANUJAN JOURNAL, v.43, no.1, pp.163 - 195-
dc.identifier.issn1382-4090-
dc.identifier.urihttp://hdl.handle.net/10203/223653-
dc.description.abstractVatsal (Duke Math J 98(2):397-419, 1999) proved that there are congruences between the p-adic L-functions (constructed by Mazur and Swinnerton-Dyer in Invent Math 25:1-61, 1974) of congruent modular forms of the same weight under some conditions. On the other hand, Kim (J Number Theory 144: 188-218, 2014), the second author, constructed two-variable p-adic L-functions of modular forms attached to imaginary quadratic fields generalizing Hida's work (Invent Math 79:159-195, 1985), and the novelty of his construction was that it works whether p is an ordinary prime or not. In this paper, we prove congruences between the two-variable p-adic L-functions (of the second author) of congruent modular forms of different but congruent weights under some conditions when p is a nonordinary prime for the modular forms. This result generalizes the work of Emerton et al. (Invent Math 163(3): 523-580, 2006), who proved similar congruences between the p-adic L-functions of congruent modular forms of congruent weights when p is an ordinary prime.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectIWASAWA INVARIANTS-
dc.subjectINTERPOLATION-
dc.subjectCURVES-
dc.titleCongruences of two-variable p-adic L-functions of congruent modular forms of different weights-
dc.typeArticle-
dc.identifier.wosid000399288100009-
dc.identifier.scopusid2-s2.0-84986253553-
dc.type.rimsART-
dc.citation.volume43-
dc.citation.issue1-
dc.citation.beginningpage163-
dc.citation.endingpage195-
dc.citation.publicationnameRAMANUJAN JOURNAL-
dc.identifier.doi10.1007/s11139-016-9819-8-
dc.contributor.localauthorChoi, Suh Hyun-
dc.contributor.nonIdAuthorKim, Byoung Du-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorNumber theory-
dc.subject.keywordAuthorArithmetic geometry-
dc.subject.keywordAuthorIwasawa Theory-
dc.subject.keywordPlusIWASAWA INVARIANTS-
dc.subject.keywordPlusINTERPOLATION-
dc.subject.keywordPlusCURVES-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0