Autonomous Electric Vehicle Sharing System Design

Cited 20 time in webofscience Cited 0 time in scopus
  • Hit : 465
  • Download : 0
Car sharing services promise "green" transportation systems. Two vehicle technologies offer marketable, sustainable sharing: autonomous vehicles (AVs) eliminate customer requirements for car pick-up and return, and battery electric vehicles entail zero emissions. Designing an autonomous electric vehicle (AEV) fleet must account for the relationships among fleet operations, charging station (CS) operations, electric powertrain performance, and consumer demand. This paper presents a system design optimization framework integrating four subsystem problems: fleet size and assignment schedule; number and locations of charging stations; vehicle powertrain requirements; and service fees. We also compare an AEV service and autonomous vehicle (AV) service with gasoline engines. A case study for an autonomous fleet operating in Ann Arbor, MI, is used to examine AEV and AV sharing systems profitability and feasibility for a variety of market scenarios. The results provide practical insights for service system decision makers.
Publisher
ASME-AMER SOC MECHANICAL ENG
Issue Date
2017-01
Language
English
Article Type
Article
Citation

JOURNAL OF MECHANICAL DESIGN, v.139, no.1

ISSN
1050-0472
DOI
10.1115/1.4034471
URI
http://hdl.handle.net/10203/220933
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0