Autothermal reforming of dimethyl ether with CGO-based precious metal catalysts

Cited 11 time in webofscience Cited 9 time in scopus
  • Hit : 436
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Seunghyeonko
dc.contributor.authorBae, Joongmyeonko
dc.date.accessioned2016-06-28T02:45:55Z-
dc.date.available2016-06-28T02:45:55Z-
dc.date.created2016-03-29-
dc.date.created2016-03-29-
dc.date.issued2016-03-
dc.identifier.citationJOURNAL OF POWER SOURCES, v.307, pp.351 - 357-
dc.identifier.issn0378-7753-
dc.identifier.urihttp://hdl.handle.net/10203/208160-
dc.description.abstractIn this paper, we investigated the DME ATR reaction with different types of precious metal (Pt, Rh, Ru)supported CGO catalysts. We also evaluated the reaction characteristics of DME ATR reaction by modifying certain reforming conditions, including the temperature, the amount of air and water, and the flow rate. The Ru-added CGO catalyst showed the best performance in DME ATR. The operating condition that produced the greatest effect on conversion efficiency was temperature; however the amounts of steam and air were also important with regard to conversion efficiency and the reaction heat. In case higher GHSV conditions the methane yields are increased. To maximize conversion efficiency with thermal neutral operating conditions, we suggest an SCR of 1.5, OCR of 0.45, over temperature of 700 degrees C, and a GHSV of less than 20,000/h. Under harsh conditions, such as low temperature and high GHSV, the methane yield increases. Therefore, the high temperature DME ATR reaction seems to consist of two main steps: the DME decomposition to methane and the methane autothermal reforming reaction.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectHYDROGEN-PRODUCTION-
dc.subjectPARTIAL OXIDATION-
dc.subjectALTERNATIVE FUEL-
dc.subjectTHERMODYNAMIC-EQUILIBRIUM-
dc.subjectSPRAY CHARACTERISTICS-
dc.subjectCOMPOSITE CATALYSTS-
dc.subjectDME-
dc.subjectENGINE-
dc.subjectSYSTEM-
dc.subjectSPINEL-
dc.titleAutothermal reforming of dimethyl ether with CGO-based precious metal catalysts-
dc.typeArticle-
dc.identifier.wosid000370884000042-
dc.identifier.scopusid2-s2.0-84954067135-
dc.type.rimsART-
dc.citation.volume307-
dc.citation.beginningpage351-
dc.citation.endingpage357-
dc.citation.publicationnameJOURNAL OF POWER SOURCES-
dc.identifier.doi10.1016/j.jpowsour.2015.12.068-
dc.contributor.localauthorBae, Joongmyeon-
dc.contributor.nonIdAuthorChoi, Seunghyeon-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDimethyl ether (DME)-
dc.subject.keywordAuthorAutothermal reforming-
dc.subject.keywordAuthorCerium-Gadolinium oxide-
dc.subject.keywordAuthorHydrogen-
dc.subject.keywordAuthorProton exchange membrane fuel cell (PEMFC)-
dc.subject.keywordPlusHYDROGEN-PRODUCTION-
dc.subject.keywordPlusPARTIAL OXIDATION-
dc.subject.keywordPlusALTERNATIVE FUEL-
dc.subject.keywordPlusTHERMODYNAMIC-EQUILIBRIUM-
dc.subject.keywordPlusSPRAY CHARACTERISTICS-
dc.subject.keywordPlusCOMPOSITE CATALYSTS-
dc.subject.keywordPlusDME-
dc.subject.keywordPlusENGINE-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusSPINEL-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0