Analysis of Oxygen Transport in Cathode Catalyst Layer of Low-Pt-Loaded Fuel Cells

Cited 37 time in webofscience Cited 33 time in scopus
  • Hit : 599
  • Download : 0
Oxygen transport resistance, one of the causes of large polarization in the cathode catalyst layer (CL), is intensified in low-Pt-loaded polymer electrolyte membrane fuel cells (PEMFCs). In order to explore operation strategies and cathode design to mitigate the large oxygen transport resistance of low-Pt-loaded fuel cells, the influence of operating conditions and ionomer structure on oxygen transport in the CL is investigated. Remarkably, the oxygen transport resistance data for different operation conditions and ionomer structures lie on a single curve when they are plotted as a function of the water partial pressure of the feed. At a high water partial pressure of 80 kPa, the oxygen transport resistance of the low-Pt-loaded CL (0.14 +/- 0.03 mg(-Pt) cm(-2)) becomes comparable to that of the high-Pt-loaded CL (0.40 +/- 0.04 mg(-Pt) cm(-2)) as a result of the opposing influences of Pt loading on Knudsen and ionomer film diffusion. This emphasizes the importance of the water uptake in the ionomer film for reducing oxygen transport in the CL. From a fuel cell design perspective, the operation strategy and CL design to maintain high water partial pressure in the cathode CL are extremely important for realizing low-Pt-loaded fuel cells.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2015-03
Language
English
Article Type
Article
Keywords

SHORT-SIDE-CHAIN; PERFLUOROSULFONIC ACID IONOMERS; HIGH-TEMPERATURE OPERATION; EQUIVALENT-WEIGHT; GAS-DIFFUSION; MEMBRANE; RESISTANCE; PERFORMANCE; NAFION; HYDROGEN

Citation

CHEMELECTROCHEM, v.2, no.3, pp.382 - 388

ISSN
2196-0216
DOI
10.1002/celc.201402354
URI
http://hdl.handle.net/10203/197730
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 37 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0