Sharing political news: the balancing act of intimacy and socialization in selective exposure

Cited 18 time in webofscience Cited 0 time in scopus
  • Hit : 306
  • Download : 0
One might think that, compared to traditional media, social media sites allow people to choose more freely what to read and what to share, especially for politically oriented news. However, reading and sharing habits originate from deeply ingrained behaviors that might be hard to change. To test the extent to which this is true, we propose a Political News Sharing (PoNS) model that holistically captures four key aspects of social psychology: gratification, selective exposure, socialization, and trust intimacy. Using real instances of political news sharing in Twitter, we study the predictive power of these features. As one might expect, news sharing heavily depends on what one likes and agrees with (selective exposure). Interestingly, it also depends on the credibility of a news source, i.e., whether the source is a social media friend or a news outlet (trust intimacy) as well as on the informativeness or the enjoyment of the news article (gratification). Finally, a Twitter user tends to share articles matching his own political leaning but, at times, the user also shares politically opposing articles, if those match the leaning of his followers (socialization). Based on our PoNS model, we build a prototype of a news sharing application that promotes serendipitous political readings along our four dimensions.
Publisher
SPRINGER HEIDELBERG
Issue Date
2014-12
Language
English
Article Type
Article
Citation

EPJ DATA SCIENCE, v.3, no.1

ISSN
2193-1127
DOI
10.1140/epjds/s13688-014-0012-2
URI
http://hdl.handle.net/10203/195823
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0