Microwave-assisted self-organization of colloidal particles in confining aqueous droplets

Cited 171 time in webofscience Cited 0 time in scopus
  • Hit : 589
  • Download : 80
Monodisperse aqueous emulsion droplets encapsulating colloidal particles were produced in the oil phase, and controlled microwave irradiation of the aqueous drop phase created spherical colloidal crystals by so-called evaporation-induced self-organization of the colloidal particles. Unlike usual colloidal crystals, colloidal crystals in spherical symmetry ( or photonic balls) possessed photonic band gaps for the normal incident light independent of the position all over the spherical surface. While the consolidation of colloidal particles in emulsion droplets in an oven took several hours, the present microwave-assisted evaporation could reduce the time for complete evaporation to a few tens of minutes. Under the microwave irradiation, the aqueous phase in emulsions was superheated selectively and the evaporation rate of water could be controlled easily by adjusting the microwave intensity. The result showed that the packing quality of colloidal crystals obtained by the microwave-assisted self-organization was good enough to show photonic band gap characteristics. The reflectance of our photonic balls responded precisely to any change in physical properties including the size of colloidal particles, refractive index mismatch, and angle of the incident beam. In particular, for polymeric particles, the photonic band gap could be tuned by the intensity of microwave irradiation, and the reflection color was red-shifted with stronger microwave irradiation. Finally, for better photonic band gap properties, inverted photonic balls were prepared by using the spherical colloidal crystals as sacrificial templates.
Publisher
AMER CHEMICAL SOC
Issue Date
2006-08
Language
English
Article Type
Article
Keywords

EMULSION POLYMERIZATION; OPTICAL-PROPERTIES; PHOTONIC CRYSTALS; DEMULSIFICATION; MICROSPHERES; CRYSTALLIZATION; FABRICATION; CLUSTERS; SILICA

Citation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.128, no.33, pp.10897 - 10904

ISSN
0002-7863
DOI
10.1021/ja063528y
URI
http://hdl.handle.net/10203/12653
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 171 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0