First-Principles Study of Electronic Structure and Hydrogen Adsorption of 3d Transition Metal Exposed Paddle Wheel Frameworks

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 216
  • Download : 0
Open-site paddle wheels, comprised of two transition metals bridged with four carboxylate ions, have been widely used for constructing metal-organic frameworks with large surface area and high binding energy sites. Using first-principles density functional theory calculations, we have investigated atomic and electronic structures of various 3d transition metal paddle wheels before and after metal exposure and their hydrogen adsorption properties at open metal sites. Notably, the hydrogen adsorption is impeded by covalent metal-metal bonds in early transition metal paddle wheels from Sc to Cr and by the strong ferromagnetic coupling of diatomic Mn and Fe in the paddle wheel configurations. A significantly enhanced H-2 adsorption is predicted in the nonmagnetic Co-2 and Zn-2 paddle wheel with the binding energy of similar to 0.2 eV per H-2. We also propose the use of two-dimensional Co-2 and Zn-2 paddle wheel frameworks that could have strongly adsorbed dihydrogen up to 1.35 wt % for noncryogenic hydrogen storage applications.
Publisher
AMER CHEMICAL SOC
Issue Date
2012-04
Language
English
Article Type
Article
Keywords

NEUTRON POWDER DIFFRACTION; ORGANIC FRAMEWORKS; STORAGE; COMPLEX; LIGAND; SITES; COORDINATION; CENTERS; BONDS

Citation

JOURNAL OF PHYSICAL CHEMISTRY C, v.116, no.13, pp.7386 - 7392

ISSN
1932-7447
DOI
10.1021/jp210985a
URI
http://hdl.handle.net/10203/101611
Appears in Collection
NT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0