DNAzyme Molecular Beacon Probes for Target-Induced Signal-Amplifying Colorimetric Detection of Nucleic Acids

Cited 70 time in webofscience Cited 0 time in scopus
  • Hit : 370
  • Download : 0
A novel DNAzyme molecular beacon (DNAzymeMB) strategy was developed for target-induced signal-amplifying colorimetric detection of target nucleic acids. The DNAzymeMB, which exhibits peroxidase activity in its free hairpin structure, was engineered to form a catalytically inactive hybrid through hybridization with a blocker DNA. The presence of target DNA leads to dissociation of the DNAzymeMB from the inactive hybrid through hybridization with the blocker DNA. This process results in recovery of the catalytically active DNAzymeMB, which can catalyze a colorimetric reaction that signals the presence of the target DNA. In addition, a primer, was rationally designed to anneal to the blocker DNA of the blocker/target DNA duplex and displace the bound target DNA during the extension reaction. The released target DNA triggers the next cycle involving hybridization with blocker DNA, DNAzymeMB dissociation, primer extension, and target displacement. This unique amplifying strategy leads to the generation of multiple numbers of active DNAzymeMB molecules from a single target molecule and gives a detection limit down to 1 pM, a value that is nearly 3 or 5 orders of magnitude lower than those of previously reported DNAzyme molecular beacon-based DNA detection methods.
Publisher
AMER CHEMICAL SOC
Issue Date
2011-01
Language
English
Article Type
Article
Keywords

DNA ENZYME; CLEAVING DNA; LIVING CELLS; RNA; PCR

Citation

ANALYTICAL CHEMISTRY, v.83, no.2, pp.494 - 500

ISSN
0003-2700
DOI
10.1021/ac102719x
URI
http://hdl.handle.net/10203/101210
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 70 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0