Three-Dimensional Trajectory Optimization of Soft Lunar Landings from the Parking Orbit with Considerations of the Landing Site

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 421
  • Download : 0
Minimum fuel, three-dimensional trajectory optimization from a parking orbit considering the desired landing site is addressed for soft lunar landings. The landing site is determined by the final longitude and latitude; therefore, a two-dimensional approach is limited and a three-dimensional approach is required. In addition, the landing site is not usually considered when performing lunar landing trajectory optimizations, but should be considered in order to design more accurate and realistic lunar landing trajectories. A Legendre pseudospectral (PS) method is used to discretize the trajectory optimization problem as a nonlinear programming (NLP) problem. Because the lunar landing consists of three phases including a de-orbit burn, a transfer orbit phase, and a powered descent phase, the lunar landing problem is regarded as a multiphase problem. Thus, a PS knotting method is also used to manage the multiphase problem, and C code for Feasible Sequential Quadratic Programming (CFSQP) using a sequential quadratic programming (SQP) algorithm is employed as a numerical solver after formulating the problem as an NLP problem. The optimal solutions obtained satisfy all constraints as well as the desired landing site, and the solutions are verified through a feasibility check.
Publisher
INST CONTROL ROBOTICS SYSTEMS
Issue Date
2011-12
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, v.9, no.6, pp.1164 - 1172

ISSN
1598-6446
URI
http://hdl.handle.net/10203/99751
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0