On the Levy-Walk Nature of Human Mobility

Cited 468 time in webofscience Cited 0 time in scopus
  • Hit : 329
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorRhee, Injongko
dc.contributor.authorShin, Minsuko
dc.contributor.authorHong, Seongikko
dc.contributor.authorLee, Kyunghanko
dc.contributor.authorKim, Seong Joonko
dc.contributor.authorChong, Songko
dc.date.accessioned2013-03-11T16:27:21Z-
dc.date.available2013-03-11T16:27:21Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2011-06-
dc.identifier.citationIEEE/ACM TRANSACTIONS ON NETWORKING, v.19, no.3, pp.630 - 643-
dc.identifier.issn1063-6692-
dc.identifier.urihttp://hdl.handle.net/10203/99600-
dc.description.abstractWe report that human walk patterns contain statistically similar features observed in Levy walks. These features include heavy-tail flight and pause-time distributions and the super-diffusive nature of mobility. Human walks are not random walks, but it is surprising that the patterns of human walks and Levy walks contain some statistical similarity. Our study is based on 226 daily GPS traces collected from 101 volunteers in five different outdoor sites. The heavy-tail flight distribution of human mobility induces the super-diffusivity of travel, but up to 30 min to 1 h due to the boundary effect of people's daily movement, which is caused by the tendency of people to move within a predefined (also confined) area of daily activities. These tendencies are not captured in common mobility models such as random way point (RWP). To evaluate the impact of these tendencies on the performance of mobile networks, we construct a simple truncated Levy walk mobility (TLW) model that emulates the statistical features observed in our analysis and under which we measure the performance of routing protocols in delay-tolerant networks (DTNs) and mobile ad hoc networks (MANETs). The results indicate the following. Higher diffusivity induces shorter intercontact times in DTN and shorter path durations with higher success probability in MANET. The diffusivity of TLW is in between those of RWP and Brownian motion (BM). Therefore, the routing performance under RWP as commonly used in mobile network studies and tends to be overestimated for DTNs and underestimated for MANETs compared to the performance under TLW.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectFLIGHT SEARCH PATTERNS-
dc.subjectAD HOC NETWORKS-
dc.subjectWANDERING ALBATROSSES-
dc.subjectNODE DISTRIBUTION-
dc.subjectMODEL-
dc.subjectDYNAMICS-
dc.subjectDIFFUSION-
dc.subjectMOTION-
dc.titleOn the Levy-Walk Nature of Human Mobility-
dc.typeArticle-
dc.identifier.wosid000291682000002-
dc.identifier.scopusid2-s2.0-79958842106-
dc.type.rimsART-
dc.citation.volume19-
dc.citation.issue3-
dc.citation.beginningpage630-
dc.citation.endingpage643-
dc.citation.publicationnameIEEE/ACM TRANSACTIONS ON NETWORKING-
dc.contributor.localauthorChong, Song-
dc.contributor.nonIdAuthorRhee, Injong-
dc.contributor.nonIdAuthorShin, Minsu-
dc.contributor.nonIdAuthorHong, Seongik-
dc.contributor.nonIdAuthorLee, Kyunghan-
dc.contributor.nonIdAuthorKim, Seong Joon-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDelay-tolerant network (DTN)-
dc.subject.keywordAuthorhuman mobility-
dc.subject.keywordAuthorLevy walk-
dc.subject.keywordAuthormobile ad hoc network (MANET)-
dc.subject.keywordAuthormobile network-
dc.subject.keywordAuthormobility model-
dc.subject.keywordPlusFLIGHT SEARCH PATTERNS-
dc.subject.keywordPlusAD HOC NETWORKS-
dc.subject.keywordPlusWANDERING ALBATROSSES-
dc.subject.keywordPlusNODE DISTRIBUTION-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusMOTION-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 468 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0