Application of design space optimization to bone remodeling simulation of trabecular architecture in human proximal femur for higher computational efficiency

Cited 29 time in webofscience Cited 0 time in scopus
  • Hit : 634
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJang, In Gwunko
dc.contributor.authorKim, Il Yongko
dc.date.accessioned2013-03-11T12:44:17Z-
dc.date.available2013-03-11T12:44:17Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2010-04-
dc.identifier.citationFINITE ELEMENTS IN ANALYSIS AND DESIGN, v.46, pp.311 - 319-
dc.identifier.issn0168-874X-
dc.identifier.urihttp://hdl.handle.net/10203/99344-
dc.description.abstractSince the 1990s, topology optimization has been used to computationally investigate the bone remodeling under the assumption that bone remodeling progresses such that the bone material is used in a structurally optimal way. Therefore most concerns in applying topology optimization to bone remodeling include the difficulty of handling large-scale problems and associated huge computational cost. In this paper, we applied a recently developed topology optimization algorithm, design space optimization (DSO), to bone remodeling simulation in order to determine trabecular architecture in human proximal femur with higher computational efficiency. We represented the full trabecular architecture in human proximal femur using a two dimensional micro-FE model with 50 mu m pixel resolution and performed simulation under three load cases in daily activities. From the quantitative comparison with conventional topology optimization results as well as the actual trabecular architecture, it was shown that DSO produced structurally equivalent trabecular architecture with shorter computing time and smaller memory requirement. As future research, a three-dimensional bone remodeling simulation will require the preparation and management of tens of millions of FE elements, and therefore DSO would be essential to handle such a massive problem as a "more efficient" algorithm. (C) 2009 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titleApplication of design space optimization to bone remodeling simulation of trabecular architecture in human proximal femur for higher computational efficiency-
dc.typeArticle-
dc.identifier.wosid000274414400002-
dc.identifier.scopusid2-s2.0-75849129603-
dc.type.rimsART-
dc.citation.volume46-
dc.citation.beginningpage311-
dc.citation.endingpage319-
dc.citation.publicationnameFINITE ELEMENTS IN ANALYSIS AND DESIGN-
dc.identifier.doi10.1016/j.finel.2009.11.003-
dc.contributor.localauthorJang, In Gwun-
dc.contributor.nonIdAuthorKim, Il Yong-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDesign space optimization-
dc.subject.keywordAuthorTopology optimization-
dc.subject.keywordAuthorLarge-scale optimization-
dc.subject.keywordAuthorBone remodeling-
dc.subject.keywordAuthorTrabecular surface remodeling-
dc.subject.keywordAuthorHuman proximal femur-
dc.subject.keywordPlusFINITE-ELEMENT MODELS-
dc.subject.keywordPlusTOPOLOGY OPTIMIZATION-
dc.subject.keywordPlusCANCELLOUS BONE-
dc.subject.keywordPlusTAIL VERTEBRAE-
dc.subject.keywordPlusWOLFFS LAW-
dc.subject.keywordPlusADAPTATION-
dc.subject.keywordPlusADJUSTMENT-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusMICE-
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 29 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0